首页> 外文OA文献 >The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures
【2h】

The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures

机译:有限系统的微正则热力学:微观   冷凝和相分离的起源;和热量的条件   从较低温度流向较高温度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microcanonical thermodynamics allows the application of statistical mechanicsboth to finite and even small systems and also to the largest, self-gravitatingones. However, one must reconsider the fundamental principles of statisticalmechanics especially its key quantity, entropy. Whereas in conventionalthermostatistics, the homogeneity and extensivity of the system and theconcavity of its entropy are central conditions, these fail for the systemsconsidered here. For example, at phase separation, the entropy, S(E), isnecessarily convex to make exp[S(E)-E/T] bimodal in E. Particularly, asinhomogeneities and surface effects cannot be scaled away, one must be carefulwith the standard arguments of splitting a system into two subsystems, orbringing two systems into thermal contact with energy or particle exchange. Notonly the volume part of the entropy must be considered. As will be shown here,when removing constraints in regions of a negative heat capacity, the systemmay even relax under a flow of heat (energy) against a temperature slope. Thusthe Clausius formulation of the second law: ``Heat always flows from hot tocold'', can be violated. Temperature is not a necessary or fundamental controlparameter of thermostatistics. However, the second law is still satisfied andthe total Boltzmann entropy increases. In the final sections of this paper, thegeneral microscopic mechanism leading to condensation and to the convexity ofthe microcanonical entropy at phase separation is sketched. Also themicroscopic conditions for the existence (or non-existence) of a criticalend-point of the phase-separation are discussed. This is explained for theliquid-gas and the solid-liquid transition.
机译:微规范热力学允许将统计力学应用到有限的甚至是很小的系统,也可以应用到最大的自重子。但是,必须重新考虑统计力学的基本原理,尤其是其关键数量熵。在传统的热力学中,系统的同质性和可扩展性以及其熵的凹度是中心条件,但对于此处考虑的系统,这些条件是失败的。例如,在相分离时,熵S(E)必须凸出,以使E中的exp [S(E)-E / T]双峰。特别是,由于无法缩小不均匀性和表面效应,因此必须谨慎对待。将系统分为两个子系统,或使两个系统与能量或粒子交换热接触的标准论点。不仅必须考虑熵的体积部分。如这里将显示的,当消除负热容量区域中的约束时,系统甚至可能在热流(能量)的作用下相对于温度斜率松弛。因此,克劳修斯(Clausius)第二定律的表述是:``热总是从热变冷''。温度不是恒温统计的必要或基本控制参数。但是,第二定律仍然满足,总玻尔兹曼熵增加。在本文的最后部分中,概述了导致相分离时缩合和微规范熵凸的一般微观机理。还讨论了相分离的临界点存在(或不存在)的微观条件。对于液-气和固-液转变进行了解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号